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ABSTRACT

In this paper we further explore a class of high order TVD (total variation diminishing)

Runge-Kutta time discretization initialized in [12], suitable for solving hyperbolic conser-

vation laws with stable spatial discretizations. We illustrate with numerical examples that

non-TVD but linearly stable Runge-Kutta time discretization can generate oscillations even

for TVD (total variation diminishing) spatial discretization, verifying the claim that TVD

Runge-Kutta methods are important for such applications. We then explore the issue of

optimal TVD Runge-Kutta methods for second, third and fourth order, and for low storage

Runge-Kutta methods.
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1 Introduction

In this paper we further explore a class of high order TVD (total variation diminishing)

Runge-Kutta time discretization initialized in [12]. For related work of multi-step type see

[11]. The method is used to solve a system of ODEs:

ut = L(u) (1:1)

with suitable initial conditions, resulting from a method of lines approximation to a hyper-

bolic conservation law:

ut = �f(u)x (1:2)

where the spatial derivative f(u)x is approximated by a TVD �nite di�erence or �nite element

approximation (e.g. [4], [8], [13], [2]), denoted by �L(u), which has the property that the

total variation of the numerical solution:

TV (u) =
X
j

juj+1 � ujj (1:3)

does not increase

TV (un+1) � TV (un) (1:4)

for a �rst order in time Euler forward stepping:

un+1 = un +�tL(un) (1:5)

under suitable restriction on �t:

�t � �t1: (1:6)

The objective of the high order TVD Runge-Kutta time discretization, is to maintain the

TVD property (1.4) while achieving higher order accuracy in time, perhaps with a di�erent

time step restriction than (1.6):

�t � c�t1: (1:7)

where c is termed CFL coe�cient for the high order time discretization.
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The TVD high order time discretization is useful not only for TVD spatial discretizations,

but also for TVB (total variation bounded) (e.g. [10]), or ENO (Essentially Non-Oscillatory)

(e.g. [5], [12]), or other types of spatial discretizations for hyperbolic problems. It maintains

stability in whatever norm, of the Euler forward �rst order time stepping, for the high order

time discretization, under the time step restriction (1.7). For example, if it is used for multi

space dimensional scalar conservation laws, for which TVD is not possible but maximum

norm stability can be maintained for high order spatial discretizations plus Euler forward

time stepping (e.g. [3]), then the same maximum norm stability can be maintained if TVD

high order time discretization is used. As another example, if an entropy inequality can be

proved for the Euler forward, then the same entropy inequality is valid under a high order

TVD time discretization.

In [12], a general Runge-Kutta method for (1.1) is written in the form:

u(i) =
i�1X
k=0

�
�iku

(k) +�t�ikL(u
(k))
�
; i = 1; :::;m (1.8)

u(0) = un; u(m) = un+1

Clearly, if all the coe�cients are nonnegative �ik � 0, �ik � 0, then (1.8) is just a convex

combination of Euler forward operators, with �t replaced by �ik

�ik
�t, since by consistency

P
i�1
k=0 �ik = 1. We thus have

Lemma 1.1. [12] The Runge-Kutta method (1.8) is TVD under the CFL coe�cient (1.7):

c = min
i;k

�ik

�ik
; (1:9)

provided that �ik � 0, �ik � 0.

2

In [12], schemes up to third order were found to satisfy the conditions in Lemma 1.1 with

CFL coe�cient equal to 1.

If we only have �ik � 0 where �ik might be negative, we need to introduce an adjoint

operator ~L. The requirement for ~L is that it approximates the same spatial derivative(s) as
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L, but is TVD (or stable in another relevant norm) for �rst order Euler, backward in time:

un+1 = un ��t~L(un) (1:10)

This can be achieved, for hyperbolic conservation laws, by solving the backward in time

version of (1.2):

ut = f(u)x: (1:11)

Numerically, the only di�erence is the change of upwind direction. Clearly, ~L can be com-

puted with the same cost as that of computing L. We then have the following lemma:

Lemma 1.2. [12] The Runge-Kutta method (1.8) is TVD under the CFL coe�cient (1.7):

c = min
i;k

�ik

j�ikj
; (1:12)

provided that �ik � 0, and L is replaced by ~L for negative �ik.

2

Notice that, if for the same k, both L(u(k)) and ~L(u(k)) must be computed, the cost as

well as storage requirement for this k is doubled. For this reason, we would like to avoid

negative �ik as much as possible. In [12], two ~L's were used to give a fourth order TVD

Runge-Kutta method with a CFL coe�cient c = 0:87. We will improve it in this paper,

however unfortunately we also prove that all four stage, fourth order Runge-Kutta methods

with positive CFL coe�cient c in (1.12) must have at least one negative �ik.

For large scale scienti�c computing in three space dimensions, storage is usually a paramount

consideration. Therefore, there are discussions about low storage Runge-Kutta methods [15],

[1], which only require 2 storage units per ODE equation. We will consider in this paper

TVD properties among such low storage Runge-Kutta methods.

In the next section, we will give numerical evidence to show that, even with a very nice

second order TVD spatial discretization, if the time discretization is by a non-TVD but

linearly stable Runge-Kutta method, the result may be oscillatory. Thus it would always be

safer to use TVD Runge-Kutta methods for hyperbolic problems.
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The investigation of TVD time discretization can also be carried out for the general-

ized Runge-Kutta methods (which have more than one step) in, e.g., [6] and [7]. We have

performed this study but failed to �nd good (in terms of CFL coe�cients and whether ~L

appears) TVD methods in this class. The result will not be discussed in this paper.

2 The Necessity to Use a TVD Time Stepping: A

Numerical Example

In this section we will show a numerical example, using the standard minmod based MUSCL

second order spatial discretization [14]. We will compare the results of a TVD versus a

non-TVD second order Runge-Kutta time discretizations. The PDE is the simple Burgers

equation

ut +
�
1

2
u2
�
x

= 0 (2:1)

with a Riemann initial data:

u(x; 0) =

(
1; if x � 0
�0:5; if x > 0

(2:2)

ux in (2.1) is approximated by the conservative di�erence

1

�x

�
f̂
j+ 1

2

� f̂
j� 1

2

�
;

where the numerical 
ux f̂
j+ 1

2
is de�ned by

f̂
j+ 1

2
= h

�
u�
j+ 1

2

; u+
j+ 1

2

�

with

u�
j+ 1

2

= uj+
1

2
minmod(uj+1�uj; uj�uj�1); u+

j+ 1

2

= uj+1�
1

2
minmod(uj+2�uj+1; uj+1�uj)

The monotone 
ux h is the Godunov 
ux

h(u�; u+) =

8<
:

minu��u�u+
�
u
2

2

�
; if u� � u+

maxu��u�u+
�
u
2

2

�
; if u� > u+
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and the now standard minmod function is given by

minmod(a; b) =
sign(a) + sign(b)

2
min(jaj; jbj):

It is easy to prove, by using Harten's Lemma [4], that the Euler forward time discretization

with this second order MUSCL spatial operator is TVD under the CFL condition (1.6):

�t �
�x

2maxj ju
n

j
j

(2:3)

Thus �t = �x

2maxj ju
n
j j
will be used in all our calculations.

The TVD second order Runge-Kutta method we consider is the one given in [12]:

u(1) = un +�tL(un) (2.4)

un+1 =
1

2
un +

1

2
u(1) +

1

2
�tL(u(1));

the non-TVD method we use is:

u(1) = un � 20�tL(un) (2.5)

un+1 = un +
41

40
�tL(un)�

1

40
�tL(u(1)):

It is easy to verify that both methods are second order accurate in time.

If the operator L is linear (for example the �rst order upwind scheme applied to a linear

PDE), then both Runge-Kutta methods (actually all the two stage, second order Runge-

Kutta methods) yield identical results (the two stage, second order Runge-Kutta method for

a linear ODE is unique). However, since our L is nonlinear, we may and do observe di�erent

results when the two Runge-Kutta methods are used.

In Figure 1 we show the result of the TVD Runge-Kutta method (2.4) and the non-TVD

method (2.5), after the shock moves about 50 grids (400 time steps for the TVD method,

528 time steps for the non-TVD method). We can clearly see that the non-TVD result is

oscillatory (there is an overshoot).
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Figure 1: Second order TVD MUSCL spatial discretization. Solution after 500 time steps.

Left: TVD time discretization (2.4); Right: non-TVD time discretization (2.5).

Such oscillations are also observed when the non-TVD Runge-Kutta method coupled with

a second order TVD MUSCL spatial discretization is applied to a linear PDE (ut+ ux = 0).

Moreover, for some Runge-Kutta methods, if one looks at the intermediate stages, i.e. u(i)

for 1 � i < m in (1.8), one observes even bigger oscillations. Such oscillations may render

di�culties when physical problems are solved, such as the appearance of negative density

and pressure for Euler equations of gas dynamics. On the other hand, TVD Runge-Kutta

method guarantees that each middle stage solution is also TVD.

This simple numerical test convinces us that it is much safer to use a TVD Runge-Kutta

method for solving hyperbolic problems.

3 The Optimal TVD Runge-Kutta Methods of Sec-

ond, Third and Fourth Order

In this section we will try to identify the optimal (in the sense of CFL coe�cient and the

cost incurred by ~L if it appears) TVD Runge-Kutta methods of m-stage, m-th order, for

m = 2; 3; 4, written in the form (1.8).

For second order m = 2, we can choose �10 and �21 as free parameters. The other
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coe�cients are then given as [12]:8>>>><
>>>>:

�10 = 1

�20 = 1 � �21

�20 = 1� 1
2�10

� �21�10

�21 =
1

2�10

(3:1)

Proposition 3.1. If we require �ik � 0 and �ik � 0, then the optimal second order TVD

Runge-Kutta method (1.8) is given by

u(1) = un +�tL(un) (3.2)

un+1 =
1

2
un +

1

2
u(1) +

1

2
�tL(u(1));

with a CFL coe�cient c = 1 in (1.9).

Proof: If we would like a CFL coe�cient c > 1, then �10 = 1 implies �10 < 1, which in turn

implies 1
2�10

> 1
2
. Also, �21 > �21 =

1
2�10

, which implies �21�10 >
1
2
. We thus have

�20 = 1�
1

2�10
� �21�10 < 1 �

1

2
�

1

2
= 0;

which is a contradiction.

2

For the third order case m = 3, the general Runge-Kutta method consists of a two

parameter family as well as two special cases of one parameter families [9]. We can similarly

prove the following proposition:

Proposition 3.2. If we require �ik � 0 and �ik � 0, then the optimal third order TVD

Runge-Kutta method (1.8) is given by

u(1) = un +�tL(un)

u(2) =
3

4
un +

1

4
u(1) +

1

4
�tL(u(1)) (3.3)

un+1 =
1

3
un +

2

3
u(2) +

2

3
�tL(u(2));

with a CFL coe�cient c = 1 in (1.9).

Proof: The proof is more technical, and is given in the Appendix.
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2

For the fourth order case m = 4, the general Runge-Kutta method again consists of a two

parameter family as well as three special cases of one parameter families [9]. Unfortunately,

this time we cannot avoid the appearance of negative �ik:

Proposition 3.3. The four stage, fourth order Runge Kutta scheme (1.8) with a nonzero

CFL coe�cient c in (1.12) must have at least one negative �ik.

Proof: The proof is technical, and is given in the Appendix.

2

We thus must settle for �nding an e�cient solution containing ~L, which maximizes c

4+i
,

where c is the CFL coe�cient (1.12) and i is the number of ~Ls. This way we are looking for

a TVD method which reaches a �xed time T with a minimal number of residue evaluations

for L or ~L. We use a computer program and the help of optimization routines to achieve

this goal. The following is the best method we can �nd:

u(1) = un +
1

2
�tL(un)

u(2) =
649

1600
u(0) �

10890423

25193600
�t~L(un) +

951

1600
u(1) +

5000

7873
�tL(u(1))

u(3) =
53989

2500000
un �

102261

5000000
�t~L(un) +

4806213

20000000
u(1) (3.4)

�
5121

20000
�t~L(u(1)) +

23619

32000
u(2) +

7873

10000
�tL(u(2))

un+1 =
1

5
un +

1

10
�tL(un) +

6127

30000
u(1) +

1

6
�tL(u(1)) +

7873

30000
u(2) +

1

3
u(3) +

1

6
�tL(u(3))

with a CFL coe�cient c = 0:936 in (1.12). Notice that two ~Ls must be computed. The

e�ective CFL coe�cient, comparing with an ideal case without ~Ls, is 0:936 � 4
6
= 0:624.

Since it is di�cult to solve the global optimization problem, we do not claim that (3.4) is

the optimal 4 stage, 4th order TVD Runge-Kutta method.
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4 The Low Storage TVD Runge-Kutta Methods

For large scale scienti�c computing in three space dimensions, storage is usually a paramount

consideration. Therefore, there are discussions about low storage Runge-Kutta methods [15],

[1], which only require 2 storage units per ODE variable. We will consider in this section

TVD properties among such low storage Runge-Kutta methods.

The general low-storage Runge-Kutta schemes can be written in the form [15], [1]:

du(i) = Aidu
(i�1) +�tL(u(i�1))

u(i) = u(i�1) +Bidu
(i); i = 1; :::;m (4.1)

u(0) = un; u(m) = un+1; A0 = 0

Only u and du must be stored, resulting in two storage units for each variable.

Carpenter and Kennedy [1] have classi�ed all the three stage, third order (m=3) low

storage Runge-Kutta methods, obtaining the following one parameter family:

z1 =
q
36c42 + 36c32 � 135c22 + 84c2 � 12

z2 = 2c22 + c2 � 2

z3 = 12c42 � 18c32 + 18c22 � 11c2 + 2

z4 = 36c42 � 36c32 + 13c22 � 8c2 + 4

z5 = 69c32 � 62c22 + 28c2 � 8

z6 = 34c42 � 46c32 + 34c22 � 13c2 + 2

B1 = c2 (4.2)

B2 =
12c2(c2 � 1)(3z2 � z1)� (3z2 � z1)

2

144c2(3c2 � 2)(c2 � 1)2

B3 =
�24(3c2 � 2)(c2 � 1)2

(3z2 � z1)2 � 12c2(c2 � 1)(3z2 � z1)

A2 =
�z1(6c

2
2 � 4c2 + 1) + 3z3

(2c2 + 1)z1 � 3(c2 + 2)(2c2 � 1)2

A3 =
�z4z1 + 108(2c2 � 1)c52 � 3(2c2 � 1)z5

24z1c2(c2 � 1)4 + 72c2z6 + 72c62(2c2 � 13)
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Which is converted into the form of equation (1.8), by introducing three new parameters.

Then we search for values of these parameters that would maximize the CFL restriction,

again by a computer program. The result seems to indicate that

c2 = 0:924574 (4:3)

gives an almost best choice, with CFL coe�cient c = 0:32 in (1.9). This is of course less

optimal than (3.3) in terms of CFL coe�cients, however the low storage form is useful for

large scale calculations.

Carpenter and Kennedy [1] have also given classes of 5 stage, 4th order low storage Runge-

Kutta methods. We have been unable to �nd TVD methods in that class with positive �ik

and �ik. Notice that ~L cannot be used without destroying the low storage property, hence

negative �ik cannot be used here.

5 Concluding Remarks

We have given a simple but illustrating numerical example to show that it is in general much

safer to use a TVD Runge-Kutta method for hyperbolic problems. We then explore the

optimal second, third and fourth order TVD Runge-Kutta methods. While for second and

third order optimal methods are found with a CFL coe�cient equal to one, for fourth order

we simply give the best method we can �nd. A TVD third order low storage Runge-Kutta

method is found, which uses only two storage units per equation and has a CFL coe�cient

equal to 0.32. Finally, we prove that general four stage fourth order Runge-Kutta methods

can not be TVD without introducing an adjoint operator ~L.

Acknowledgments: We would like to thank Mordechai Berger and Mark Carpenter for

helpful discussions.
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6 Appendix

In this appendix we prove Proposition 3.2 and Proposition 3.3.

We write the general 4 stage, 4th order Runge-Kutta method in the following standard

form [9]:

u(1) = un + c10L(u
n)

u(2) = un + c20�tL(u
n) + c21�tL(u

(1))

u(3) = un + c30�tL(u
n) + c31�tL(u

(1)) + c32�tL(u
(2)) (6.1)

un+1 = un + c40�tL(u
n) + c41�tL(u

(1)) + c42�tL(u
(2)) + c43�tL(u

(3))

The relationship between the coe�cients cik here and �ik and �ik in (1.8) is:

c10 = �10

c20 = �20 + �21�10

c21 = �21

c30 = �32�21�10 + �31�10 + �32�20+ �30

12



c31 = �32�21 + �31 (6.2)

c32 = �32

c40 = �43�32�21�10 + �43�32�20 + �43�31�10 + �42�21�10

+�41�10 + �42�20 + �43�30 + �40

c41 = �43�32�21 + �42�21 + �43�31+ �41

c42 = �43�32 + �42

c43 = �43

For a third order Runge-Kutta method, the general form (6.1) is similar without the last

line (and with u(3) replaced by un+1). The relationship (6.2) also is similar without the last

four lines for c40, c41, c42 and c43.

Proof of Proposition 3.2:

The general third order, three stage Runge-Kutta method in the form (6.1) is given by a

two parameter family as well as by two special cases of one parameter families [9].

� General Case: If �3 6= �2, �3 6= 0, �2 6= 0 and �2 6=
2
3
:

c10 = �2

c20 =
3�2�3(1� �2)� �2

3

�2(2� 3�2)

c21 =
�3(�3 � �2)

�2(2 � 3�2)

c30 = 1 +
2 � 3(�2 + �3)

6�2�3

c31 =
3�3 � 2

6�2(�3 � �2)

c32 =
2 � 3�2

6�3(�3 � �2)

Notice that 6�2c21c32 = 1 and c20 + c21 = �3. If we want to have a CFL coe�cient

c > 1 in (1.9), we would need �ik > �ik � 0 unless both of them are zeroes. This also
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implies that cik � 0 by (6.2). Also, notice that ci;i�1 = �i;i�1 > 0, otherwise that stage

is not necessary.

Now, c10 = �10 < �10 = 1 and c10 > 0 imply 0 < �2 < 1.

1. �3 > �2.

c21 � 0 implies �2 <
2
3
, and c31 � 0 requires �3 �

2
3
.

�20 � 0 and �21 > �21 imply c20 � �21�10 > �21�10, which is �3 � c21 > c21�2, or

�3

1+�2
> c21. So we must have

�3 <
3�2 � 2�2

2

1 + �2

On the other hand, �31 � 0 requires c31 � �32�21 > c32c21 = 1
6�2

, which is

3�3 � 2 > �3 � �2, or

�3 > 1�
1

2
�2

Combining these two inequalities, we get 1� 1
2
�2 <

3�2�2�
2
2

1+�2
, or (2�3�2)(1��2) <

0, which is a contradiction, since 2 � 3�2 > 0 and 1� �2 > 0.

2. �2 > �3.

�3 = c20 + c21 > 0 requires �3 > 0.

c32 > 0 requires �2 >
2
3
, and c31 � 0 requires �3 �

2
3
.

c31 � �32�21 > c32c21 =
1

6�2
, which is

�3 < 1�
1

2
�2;

c20 � �21�10 > �21�10 requires

�3 >
�2(3� 2�2)

1 + �2

Putting these two inequalities together, we have �2(3�2�2)

1+�2
< 1� 1

2
�2, which means

(2 � 3�2)(1� �2) > 0, a contradiction since 1 � �2 > 0 and 2 � 3�2 < 0.
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� Special Case I: �2 = �3 =
2
3
. In this case

c10 =
2

3

c20 =
2

3
�

1

4!3

c21 =
1

4!3

c30 =
1

4

c31 =
3

4
� !3

c32 = !3

�31 � 0 and �32 > �32 = c32 requires c31 � �32�21 > c32�21 =
1
4
which implies !3 <

1
2
.

�20 � 0 and �21 > �21 = c21 requires c20 � �21�10 >
2
3
c21, which means 2

3
�

1
4!3

> 2
3

1
4!3

,

for which we must have !3 >
5
8
. A contradiction.

� Special Case II: �3 = 0. In this case the equations read

c10 =
2

3

c20 =
1

4!3

c21 = �
1

4!3

c30 =
1

4
� !3

c31 =
3

4

c32 = !3

Clearly c20 and c21 cannot be simultaneously nonnegative.

� Special Case III: �2 = 0. In this case the method is not third order.

2
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Proof of Proposition 3.3:

Recall that all the �ik's must be nonnegative to satisfy our TVD criteria. From the

relationship (6.2) between the coe�cients of (6.1) and of (1.8), we can see that nonnegative

�ik's imply nonnegative cik's. We now show that we cannot have all nonnegative cik's.

� General Case. If two parameters �2 and �3 are such that: �2 6= �3, �2 6= 1, �2 6= 0,

�2 6=
1
2
, �3 6= 1, �3 6= 0, �3 6=

1
2
, and 6�2�3� 4(�2 +�3) + 3 6= 0. Then the coe�cients

cik are [9]:

c10 = �2, c20 = �3 � c21, c21 =
�3(�3��2)

2�2(1�2�2)
,

c30 = 1� c31 � c32, c31 =
(1��2)[�2+�3�1�(2�3�1)

2]

2�2(�3��2)[6�2�3�4(�2+�3)+3]
, c32 =

(1�2�2)(1��2)(1��3)

�3(�3��2)[6�2�3�4(�2+�3)+3]
,

c40 =
1
2
+1�2(�2+�3)

12�2�3
, c41 =

2�3�1
12�2(�3��2)(1��2)

, c42 =
(1�2�2)

12�3(�3��2)(1��3)
, c43 =

1
2
+ 2(�2+�3)�3

12(1��2)(1��3)
.

There are �ve possibilities to consider:

1. �2 < 0 implies c10 < 0.

2. �3 > �2 > 0 and 0 < �2 <
1
2
:

c41 � 0 requires �3 > 1
2
. c20 � 0 requires �3 � 3�2 � 4�2

2 �
9
16
. c32 � 0 and

c31 � 0 require that �2 � 2� 5�3 + 4�2
3. Since this is a decreasing function of �3

when �3 �
9
16
, we obtain �2 � 2 � 5(3�2 � 4�2

2) + 4(3�2 � 4�2
2)

2. Rearranging,

we �nd that 0 � 2((2�2 � 1)2 + 4�2
2) (2�2 � 1)2, which is impossible.

3. �3 < �2 and �2 >
1
2
:

c42 � 0 requires 0 < �3 < 1.

We can only have c32 � 0 in one of two ways:

(a) If 1 � �2 > 0, and 6�2�3 � 4(�2 + �3) + 3 > 0.

c41 � 0 requires �3 < 1
2
. Simple calculation yields c30 = 1 � c31 � c32 =

(2�6�2+4�
2
2
)+(�5+15�2�12�

2
2
)�3+(4�12�2+12�

2
2
)�2

3

2�2�3(6�2�3�4(�2+�3)+3)
, hence c30 � 0 requires

A+B�3+C�
2
3 � (2�6�2+4�

2
2)+(�5+15�2�12�

2
2)�3+(4�12�2+12�

2
2)�

2
3 � 0
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It is easy to show that, when 1
2
< �2 < 1, we have A < 0, B < 0 and C > 0.

Thus, for 0 < �3 <
1
2
, we have

A+B�3+C�
2
3 < max

�
A;A+

1

2
B +

1

4
C

�
= max

�
A;

1

2
(1 � 2�2)(1� �2)

�
< 0;

which is a contradiction.

(b) �2 > 1, and 6�2�3 � 4(�2 + �3) + 3 < 0:

c31 � 0 requires �2 + �3 � 1 � (2�3 � 1)2 � 0, which implies

(1 � 4�3)(1� �3) = 4�2
3 � 5�3 + 1 � �2 � 1 > 0:

Clearly, this is true only if �3 <
1
4
.

Now, c40 � 0 requires that 0 � 6�2�3� 2(�2+�3) + 1 = 2�3(3�2� 1) + (1�

2�2) �
1
2
(3�2 � 1) + (1� 2�2) =

1
2
(1� �2), an apparent contradiction.

4. 0 < �2 <
1
2
and �3 < �2: in this case we can see immediately that c42 < 0.

5. If 1
2
< �2 < �3, c21 < 0.

� If 6�2�3� 4(�2+�3) + 3 = 0, or if �2 = 0 or if �3 = 1, then this method is not fourth

order [9].

� Special Case I. If �2 = �3 the method can be fourth order only if �2 = �3 =
1
2
. In

this case [9] c10 = 1
2
, c20 = 1

2
�

1
6w3

, c21 = 1
6w3

, c30 = 0, c31 = 1 � 3w3, c32 = 3w3,

c40 =
1
6
, c41 =

2
3
� w3, c42 = w3, c43 =

1
6
.

Clearly we need to have c42 = w3 � 0. To have c31 = 1�3w3 � 0 and c20 =
1
2
�

1
6w3

� 0,

we require w3 = 1
3
. This leads to the classical fourth order Runge-Kutta method.

Clearly, then, �21 =
c20��20

�10
= �2�20. This is only acceptable if �21 = �20 = 0. But

�21 =
1
2
, so in the case where all �ik's are nonnegative, the CFL coe�cient (1.12) is

equal to zero.

� Special Case II. If �2 = 1, the method can be fourth order only if �3 = 1
2
. Then

[9] c10 = 1, c20 = 3
8
, c21 = 1

8
, c30 = 1 � c31 � c32, c31 = �

1
12w4

, c32 = 1
3w4

, c40 = 1
6
,

c41 =
1
6
�w4, c42 =

2
3
, c43 = w4.
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In this case we want c31 = �
1

12w4
� 0 which means w4 < 0. But then c43 = w4 < 0. So

this case does not allow all nonnegative �ik's.

� Special Case III. If �3 = 0 the method can be fourth order only if �2 =
1
2
. Then [9]

c10 =
1
2
, c20 = �

1
12w3

, c21 =
1

12w3
, c30 = 1 � c31 � c32, c31 =

3
2
, c32 = 6w3, c40 =

1
6
� w3,

c41 =
2
3
, c42 = w3, c43 =

1
6
.

Clearly, c20 = �
1

12w3
= �c21, one of these must be negative. Thus, this case does not

allow all nonnegative �ik's, either.
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